Classical and Quantum Nonlinear Dynamics Frühjahrsemester 2024

Blatt 6

Abgabe: 18.04.2024
Tutor: Parvinder Solanki Zi. 448; parvinder.parvinder@unibas.ch

(1) Lorenz equations for large r

(5 Punkte)
Consider the Lorenz equations in the limit of $r \rightarrow \infty$, By taking the limit in a certain way, all the dissipative terms in the equations can be removed.
(a) Let $\epsilon=r^{-1 / 2}$. Find a change of variables such that as $\epsilon \rightarrow 0$, the equations become

$$
\begin{gathered}
X^{\prime}=Y \\
Y^{\prime}=-X Z \\
Z^{\prime}=X Y .
\end{gathered}
$$

(b) Find two conserved quantites (i.e., constants of motion) for the new system.
(c) Show that the new system is volume-preserving.
(d) Explain physically why the Lorenz equations might be expected to show some conservative features in the limit $r \rightarrow \infty$.
(e) Solve the new system numerically. What is the long-term behavior? Does it agree with the behavior seen in the Lorenz equations?
(2) Logistic parabola (5 Punkte +3 Bonuspunkte)
The logistic map

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right)
$$

is a discrete-time analog of the logistic equation of population growth and one of the most studied mathematical "laboratories" for chaos. The goal of this problem is to write a program to plot its orbit diagram, i.e., reproduce Fig. 10.2.7 of Strogatz that has become an icon of nonlinear dynamics.
(a) Write a computer program with two loops. For each $r \in[2.5,4]$, generate an orbit $x_{0}, x_{1}, x_{2}, \ldots$ starting from some random initial condition $x_{0} \in[0,1]$. Iterate for 300 cycles or so, to allow the system to settle down to its eventual behavior. Once the transients have decayed, plot many points, say x_{301}, \ldots, x_{600} above that r. Then move to the next value of r and repeat.
(b) Show that near $r \approx 3.83$ there is a stable period-3 cycle. Show that there is a stable period- 5 cycle near $r \approx 3.9057065$.
(c) Convince yourself that the orbit diagram is self-similar by plotting the window $r \in[3.847,3.857]$ and restricting the vertical axes to values in $[0.13,0.175]$, see lower panel of Fig. 10.2.7.
(d) Amazingly, the dynamics calculated in (a) is universal for all unimodal maps (i.e., maps for which the RHS is smooth, concave down and has a simple maximum). Repeat (a) for the sine map

$$
x_{n+1}=r \sin \pi x_{n}
$$

for $r \in[0,1]$ and $x \in[0,1]$. Plot the orbit diagram and compare to the logistic map.

