Classical and Quantum Nonlinear Dynamics Frühjahrsemester 2024

Blatt 5

Abgabe: 11.04.2024
Tutor: Tobias Nadolny Zi. 448; tobias.nadolny@unibas.ch

(1) Fixed points in Hamiltonian systems

(2 Punkte)
Consider an autonomous Hamiltonian system

$$
\dot{q}=\frac{\partial H(p, q)}{\partial p} ; \quad \dot{p}=-\frac{\partial H(p, q)}{\partial q}
$$

Show that fixed points are either saddle points or centers.
(2) Homoclinic/infinite-period bifurcations in a Josephson junction (4 Punkte)

Read and understand Section 8.5 of Strogatz. Note that in the subsection Homoclinic bifurcation as well as in the paragraph around Fig. 8.5.11, I_{c} should be replaced by I_{r} (for retrapping current) since it is different from the critical current in Eq. (1) of Sec. 8.5.
(a) Reproduce Fig. 8.5.11
(3) Trapping region for the Lorenz equations
(2 Punkte)
Show that there is a certain ellipsoidal region E of the form

$$
r x^{2}+\sigma y^{2}+\sigma(z-2 r)^{2} \leq C
$$

such that all trajectories of the Lorenz equations eventually enter E and stay there forever.
Bonus problem: Try to obtain the smallest possible value of C with this property.
(4) Numerical solution of the Lorenz equations (2 Punkte +2 Bonuspunkte)

Solve the Lorenz equations numerically.
(a) Choose the "standard" parameter values $\sigma=10, b=8 / 3, r=28$ and plot z over x, x over t, and z over x and y for a typical initial condition, e.g., $\mathbf{x}(0)=(1,5,10)$.
(b) Vary r and confirm and discuss the various behaviors described in Section 9.5 of Strogatz.
(5) Lorenz map

Read the first two pages of Section 9.4 in Strogatz.
Compute the Lorenz map: use a computer to reproduce Fig. 9.4.3.

