Classical and Quantum Nonlinear Dynamics Frühjahrsemester 2024

Blatt 3

Abgabe: 21.03.2024
Tutor: Marcelo Janovitch Zi. 515 Phys. Chem.; m.janovitch@unibas.ch

(1) Attracting/Liapunov stable/asymptotically stable

(2 Punkte)
For each of the following systems, decide whether the origin is attracting, Liapunov stable, asymptotically stable ($=$ attracting and Liapunov stable), or none of the above.
(a) $\dot{x}=2 y, \dot{y}=x$
(b) $\dot{x}=0, \dot{y}=x$
(c) $\dot{x}=0, \dot{y}=-y$
(d) $\dot{x}=-x, \dot{y}=-5 y$
(2) Classification of fixed points

Plot the phase portrait and classify the fixed points in the following linear systems. If the eigenvectors are real, indicate them in your sketch.
(a) $\dot{x}=5 x+10 y, \dot{y}=-x-y$
(b) $\dot{x}=3 x-4 y, \dot{y}=x-y$
(c) $\dot{x}=-3 x+2 y, \dot{y}=x-2 y$
(d) $\dot{x}=5 x+2 y, \dot{y}=-17 x-5 y$
(3) Intersection of trajectories?
(2 Punkte)
We claimed that different trajectories can never intersect. But in many phase portraits, different trajectories appear to intersect at a fixed point. Is there a contradiction here?
(4) A linear center that's actually a nonlinear spiral

Consider the system

$$
\dot{x}=-y-x^{3}, \quad \dot{y}=x .
$$

Show that the origin is a spiral, although the linearization predicts a center.
(5) Saddle switching and structural stability

Consider the system

$$
\dot{x}=a+x^{2}-x y, \quad \dot{y}=y^{2}-x^{2}-1,
$$

where a is a parameter.
(a) Sketch the phase portrait for $a=0$. Show that there is a trajectory connecting two saddle points (a saddle connection).
(b) Use a computer to sketch the phase portrait for $a<0$ and $a>0$.
(6) Bonus problems
(4 Bonuspunkte)
In Strogatz, there are many fun problems in areas like economy or or politics; see e.g. problem 6.4.9 (Model of a national economy)
or
problem 6.4.11 (Leftists, rightists, centrists). Solve one of those and present it in the exercise class.

