Classical and Quantum Nonlinear Dynamics Frühjahrsemester 2024

Blatt 2

Abgabe: 14.03.2024
Tutor: Julian Arnold Zi. 4.10; julian.arnold@unibas.ch

(1) Distinguishing various types of bifurcations

(2 Punkte)
In each case, find the values of r at which bifurcations occur, and classify those as saddlenode, transcritical, supercritical pitchfork, or subcritical pitchfork. Finally, sketch the bifurcation diagrams of fixed points x^{*} vs. r.
(a) $\dot{x}=r x-x /(1+x)$
(b) $\dot{x}=r x-x /\left(1+x^{2}\right)$
(c) $\dot{x}=x+\tanh (r x)$
(d) $\dot{x}=r x+x^{3} /\left(1+x^{2}\right)$
(2) Flows on the circle
(6 Punkte)
Read and understand Sections 4.1-4.3 and 4.6 in Strogatz.
(a) Consider a Josephson junction in the overdamped limit $\beta=0$ described by

$$
\begin{equation*}
\phi^{\prime}:=\frac{\hbar}{2 e R I_{c}} \dot{\phi}=\frac{I}{I_{c}}-\sin \phi \tag{1}
\end{equation*}
$$

(Eq. (4.6.7) in Strogatz; $\phi^{\prime}=\mathrm{d} \phi / \mathrm{d} \tau$ where $\tau=2 e R I_{c} t / \hbar$ is a dimensionless time.) Sketch the supercurrent $I_{c} \sin \phi(t)$ as a function of t, assuming first that I / I_{c} is slightly greater than 1 , and then assuming that $I / I_{c} \gg 1$.
(b) Sketch the instantaneous voltage $V(t)=(\hbar /(2 e)) \dot{\phi}(t)$ for the two cases considered in (a)
(c) Check your qualitative conclusions in (a) and (b) by integrating (1) numerically, and plotting the graphs of $I_{c} \sin \phi(t)$ and $V(t)$. Calculate the time average of $\langle V\rangle$ of $V(t)$ and compare with the exact result $\langle V\rangle=I_{c} R \sqrt{\left(I / I_{c}\right)^{2}-1}$ for $I>I_{c}$.
(3) Phase portraits
(2 Punkte)
Read Section 4.1 in Strogatz. For each of the following questions, sketch the phase portrait as a function of the control parameter μ. Classify the bifurcations that occur as μ varies, and find all the bifurcation values of μ.
(a) $\dot{\theta}=\mu \sin \theta-\sin 2 \theta$
(b) $\dot{\theta}=\sin \theta /(\mu+\cos \theta)$
(c) $\dot{\theta}=\mu+\cos \theta+\cos 2 \theta$
(d) $\dot{\theta}=\sin 2 \theta /(1+\mu \sin \theta)$
(4) Critical slowing down In statistical mechanics, the phenomenon of "critical slowing down" is a signature of a second-order phase transition. At the transition, the system relaxes to equilibrium much more slowly than usual. A mathematical version of the effect can be studied using the normal form of the supercritical pitchfork bifurcation $\dot{x}=r x-x^{3}$.
(a) For $r<0$, the origin is the only fixed point, and it is stable. Determine the typical time of the decay towards the origin.
(b) At $r=0$, the origin is still stable, but much more weakly so. Obtain the analytical solution to $\dot{x}=-x^{3}$ for an arbitrary initial condition. Show that $x(t) \rightarrow 0$ as $t \rightarrow \infty$, but that the decay is not exponential.
(c) To get some intuition about the slowness of the decay, make a numerically accurate plot of the solution for the initial condition $x(0)=1$, for $0 \leq t \leq 10$, and compare the decay for $r=-1$ and $r=0$.

