Classical and Quantum Nonlinear Dynamics Frühjahrsemester 2024

Blatt 2

Abgabe: 14.03.2024 <u>Tutor:</u> Julian Arnold Zi. 4.10; julian.arnold@unibas.ch

- (1) **Distinguishing various types of bifurcations** (2 Punkte) In each case, find the values of r at which bifurcations occur, and classify those as saddlenode, transcritical, supercritical pitchfork, or subcritical pitchfork. Finally, sketch the bifurcation diagrams of fixed points x^* vs. r.
 - (a) $\dot{x} = rx x/(1+x)$
 - (b) $\dot{x} = rx x/(1 + x^2)$
 - (c) $\dot{x} = x + \tanh(rx)$
 - (d) $\dot{x} = rx + x^3/(1+x^2)$

(2) Flows on the circle

Read and understand Sections 4.1 - 4.3 and 4.6 in Strogatz.

(a) Consider a Josephson junction in the overdamped limit $\beta = 0$ described by

$$\phi' := \frac{\hbar}{2eRI_c} \dot{\phi} = \frac{I}{I_c} - \sin\phi \tag{1}$$

(Eq. (4.6.7) in Strogatz; $\phi' = d\phi/d\tau$ where $\tau = 2eRI_ct/\hbar$ is a dimensionless time.) Sketch the supercurrent $I_c \sin \phi(t)$ as a function of t, assuming first that I/I_c is slightly greater than 1, and then assuming that $I/I_c \gg 1$.

- (b) Sketch the instantaneous voltage $V(t) = (\hbar/(2e))\dot{\phi}(t)$ for the two cases considered in (a)
- (c) Check your qualitative conclusions in (a) and (b) by integrating (1) numerically, and plotting the graphs of $I_c \sin \phi(t)$ and V(t). Calculate the time average of $\langle V \rangle$ of V(t) and compare with the exact result $\langle V \rangle = I_c R \sqrt{(I/I_c)^2 1}$ for $I > I_c$.

(3) Phase portraits

Read Section 4.1 in Strogatz. For each of the following questions, sketch the phase portrait as a function of the control parameter μ . Classify the bifurcations that occur as μ varies, and find all the bifurcation values of μ .

(a)
$$\dot{\theta} = \mu \sin \theta - \sin 2\theta$$
 (b) $\dot{\theta} = \sin \theta / (\mu + \cos \theta)$ (c) $\dot{\theta} = \mu + \cos \theta + \cos 2\theta$
(d) $\dot{\theta} = \sin 2\theta / (1 + \mu \sin \theta)$

(6 Punkte)

(2 Punkte)

(4) Critical slowing down

In statistical mechanics, the phenomenon of "critical slowing down" is a signature of a second-order phase transition. At the transition, the system relaxes to equilibrium much more slowly than usual. A mathematical version of the effect can be studied using the normal form of the supercritical pitchfork bifurcation $\dot{x} = rx - x^3$.

- (a) For r < 0, the origin is the only fixed point, and it is stable. Determine the typical time of the decay towards the origin.
- (b) At r = 0, the origin is still stable, but much more weakly so. Obtain the analytical solution to $\dot{x} = -x^3$ for an arbitrary initial condition. Show that $x(t) \to 0$ as $t \to \infty$, but that the decay is not exponential.
- (c) To get some intuition about the slowness of the decay, make a numerically accurate plot of the solution for the initial condition x(0) = 1, for $0 \le t \le 10$, and compare the decay for r = -1 and r = 0.