Departement Physik, Universität Basel

Prof. C. Bruder (Zimmer 4.2, Tel.: 20736 92, Christoph.Bruder@unibas.ch)
Theory of Superconductivity, Frühjahrsemester 2023

Blatt 2

Abgabe: 16.3.23, 12:00H (Treppenhaus 4. Stock)

Tutor: Tobias Nadolny, Zi.: 4.48

To obtain 4 credit points and the grade " 4 " you will have to reach 50% of the points in the homework problems. The grade can be improved by participating in the oral exam.
(1) Quasi-particle excitations in superconductors

Define operators $\gamma_{\mathbf{k} \uparrow}^{\dagger}$ and $\gamma_{\mathbf{k} \downarrow}^{\dagger}$ by

$$
\begin{aligned}
\gamma_{\mathbf{k} \uparrow}^{\dagger} & =u_{\mathbf{k}}^{*} c_{\mathbf{k} \uparrow}^{\dagger}-v_{\mathbf{k}}^{*} c_{-\mathbf{k} \downarrow} \\
\gamma_{-\mathbf{k} \downarrow}^{\dagger} & =u_{\mathbf{k}}^{*} c_{-\mathbf{k} \downarrow}^{\dagger}+v_{\mathbf{k}}^{*} c_{\mathbf{k} \uparrow}
\end{aligned}
$$

$u_{\mathbf{k}}$ and $v_{\mathbf{k}}$ are complex numbers satisfying $\left|u_{\mathbf{k}}\right|^{2}+\left|v_{\mathbf{k}}\right|^{2}=1$ for each momentum \mathbf{k}, and c^{\dagger}, c are the (standard) electron creation and annihilation operators.
(a) Prove that the superconducting ground state $\left|\psi_{\mathrm{BCS}}\right\rangle=\prod_{\mathbf{k}}\left(u_{\mathbf{k}}+v_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}\right)|0\rangle$ is the vacuum state of the γ operators, that is,

$$
\gamma_{\mathbf{k} \uparrow}\left|\psi_{\mathrm{BCS}}\right\rangle=\gamma_{\mathbf{k} \downarrow}\left|\psi_{\mathrm{BCS}}\right\rangle=0 .
$$

(b) Obtain explicit expressions of the states created by the γ^{\dagger} operators, $\gamma_{\mathbf{k} \uparrow}^{\dagger}\left|\psi_{\mathrm{BCS}}\right\rangle$ and $\gamma_{\mathbf{k} \downarrow}^{\dagger}\left|\psi_{\mathrm{BCS}}\right\rangle$, in terms of the electron creation operators $c_{\mathbf{k} \uparrow}^{\dagger}$ and $c_{\mathbf{k} \downarrow}^{\dagger}$.

We will see that the states created by $\gamma_{\mathbf{k} \uparrow}^{\dagger}, \gamma_{\mathbf{k} \downarrow}^{\dagger}$ are the quasi-particle excitations of wave vector \mathbf{k} and spin \uparrow and \downarrow above the superconducting ground state.

(2) Average and fluctuations of electron number in the BCS state (5 Punkte)

(a) Obtain the average electron number $\bar{N}=\left\langle\psi_{\mathrm{BCS}}\right| N\left|\psi_{\mathrm{BCS}}\right\rangle$ in the BCS ground state in terms of $v_{\mathbf{k}}$ or $u_{\mathbf{k}}$, where the total electron number operator N has the following second-quantized form:

$$
N=\sum_{\mathbf{k}}\left(c_{\mathbf{k} \uparrow \uparrow}^{\dagger} c_{\mathbf{k} \uparrow}+c_{\mathbf{k} \downarrow}^{\dagger} c_{\mathbf{k} \downarrow}\right) .
$$

Interpret the result in view of the physical meaning of $v_{\mathbf{k}}$ or $u_{\mathbf{k}}$.
Hint: one way (but not the only way) is to rewrite the electron operators in terms of the γ-operators and then use the result of problem 1(a).
(b) Obtain the fluctuation of the electron number $(\delta N)^{2}=\left\langle\psi_{\mathrm{BCS}}\right|(N-\bar{N})^{2}\left|\psi_{\mathrm{BCS}}\right\rangle$ in a similar way as done in (a). How does $\delta N / \bar{N}$ behave in the thermodynamic limit $\bar{N} \rightarrow \infty$?
(c) (independent of (a) and (b)) Show that

$$
\left|\psi_{\mathrm{N}}\right\rangle=\left(\sum_{\mathbf{k}} g_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}\right)^{\frac{N}{2}}|0\rangle
$$

can be obtained by projecting $\left|\psi_{\mathrm{BCS}}\right\rangle$ on the subspace of states with particle number N. How is $g_{\mathbf{k}}$ related to $u_{\mathbf{k}}, v_{\mathbf{k}}$?

