Theory of Superconductivity, Frühjahrsemester 2023

Blatt 2

Abgabe: 16.3.23, 12:00H (Treppenhaus 4. Stock) <u>Tutor:</u> Tobias Nadolny, Zi.: 4.48

To obtain <u>4 credit points</u> and the grade "4" you will have to reach 50% of the points in the homework problems. The grade can be improved by participating in the oral exam.

(1) Quasi-particle excitations in superconductors (5 Punkte) Define operators x^{\dagger} and x^{\dagger} by

Define operators $\gamma^{\dagger}_{\mathbf{k}\uparrow}$ and $\gamma^{\dagger}_{\mathbf{k}\downarrow}$ by

$$\gamma^{\dagger}_{\mathbf{k}\uparrow} = u^*_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\uparrow} - v^*_{\mathbf{k}} c_{-\mathbf{k}\downarrow}$$
$$\gamma^{\dagger}_{-\mathbf{k}\downarrow} = u^*_{\mathbf{k}} c^{\dagger}_{-\mathbf{k}\downarrow} + v^*_{\mathbf{k}} c_{\mathbf{k}\uparrow} ;$$

 $u_{\mathbf{k}}$ and $v_{\mathbf{k}}$ are complex numbers satisfying $|u_{\mathbf{k}}|^2 + |v_{\mathbf{k}}|^2 = 1$ for each momentum \mathbf{k} , and c^{\dagger} , c are the (standard) electron creation and annihilation operators.

(a) Prove that the superconducting ground state $|\psi_{BCS}\rangle = \prod_{\mathbf{k}} (u_{\mathbf{k}} + v_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger}) |0\rangle$ is the vacuum state of the γ operators, that is,

$$\gamma_{\mathbf{k}\uparrow} \ket{\psi_{\mathrm{BCS}}} = \gamma_{\mathbf{k}\downarrow} \ket{\psi_{\mathrm{BCS}}} = 0$$
 .

(b) Obtain explicit expressions of the states created by the γ^{\dagger} operators, $\gamma^{\dagger}_{\mathbf{k}\uparrow} |\psi_{\text{BCS}}\rangle$ and $\gamma^{\dagger}_{\mathbf{k}\downarrow} |\psi_{\text{BCS}}\rangle$, in terms of the electron creation operators $c^{\dagger}_{\mathbf{k}\uparrow}$ and $c^{\dagger}_{\mathbf{k}\downarrow}$.

We will see that the states created by $\gamma^{\dagger}_{\mathbf{k}\uparrow}$, $\gamma^{\dagger}_{\mathbf{k}\downarrow}$ are the quasi-particle excitations of wave vector \mathbf{k} and spin \uparrow and \downarrow above the superconducting ground state.

(2) Average and fluctuations of electron number in the BCS state (5 Punkte)

(a) Obtain the average electron number $\overline{N} = \langle \psi_{\text{BCS}} | N | \psi_{\text{BCS}} \rangle$ in the BCS ground state in terms of $v_{\mathbf{k}}$ or $u_{\mathbf{k}}$, where the total electron number operator N has the following second-quantized form:

$$N = \sum_{\mathbf{k}} \left(c^{\dagger}_{\mathbf{k}\uparrow} c_{\mathbf{k}\uparrow} + c^{\dagger}_{\mathbf{k}\downarrow} c_{\mathbf{k}\downarrow} \right) \,. \label{eq:N}$$

Interpret the result in view of the physical meaning of $v_{\mathbf{k}}$ or $u_{\mathbf{k}}$. Hint: one way (but not the only way) is to rewrite the electron operators in terms

of the γ -operators and then use the result of problem 1(a).

- (b) Obtain the fluctuation of the electron number $(\delta N)^2 = \langle \psi_{BCS} | (N \overline{N})^2 | \psi_{BCS} \rangle$ in a similar way as done in (a). How does $\delta N/\overline{N}$ behave in the thermodynamic limit $\overline{N} \to \infty$?
- (c) (independent of (a) and (b)) Show that

$$|\psi_{\rm N}\rangle = \left(\sum_{\mathbf{k}} g_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow}\right)^{\frac{N}{2}} |0\rangle$$

can be obtained by projecting $|\psi_{\text{BCS}}\rangle$ on the subspace of states with particle number N. How is $g_{\mathbf{k}}$ related to $u_{\mathbf{k}}, v_{\mathbf{k}}$?