Theory of Superconductivity, Früjahrsemester 2023

Blatt 10

Abgabe: 25.05.23, 12:00H (Treppenhaus 4. Stock)

Tutor: Julian Arnold Zi.: 4.10

(1) Cooper-pair box

(10 Punkte)

Consider the Cooper pair box Hamiltonian

$$\hat{H}_{\text{CPB}} = 4E_C(\hat{N} - n_q)^2 - E_J \cos(\hat{\varphi})$$

where $n_g = -q/(2e) = -C_g V_g/(2e)$.

- (a) Show that $[\hat{N}, \hat{\varphi}]_{-} = i$ leads to $[\hat{N}, e^{i\hat{\varphi}}]_{-} = -e^{i\hat{\varphi}}$. Use this commutator to express $\cos(\hat{\varphi})$ and \hat{H}_{CPB} in the eigenbasis $\{|N\rangle\}_{N\in\mathbb{Z}}$ of the charge operator.
- (b) For $E_c \gg E_J$, sketch the energy spectrum as a function of n_g .
- (c) Consider the point $n_g = N 1/2$ for an integer $N \in \mathbb{Z}$. Estimate the energy splitting of the two lowest eigenstates.
- (d) Solve the Schrödinger equation of the Cooper-pair box

$$E\psi(N) = H\psi(N) = 4E_C (N - n_g)^2 \psi(N) - \frac{E_J}{2} [\psi(N - 1) + \psi(N + 1)]$$

numerically. Plot the eigenvalues as a function of n_g for different values of the ratio E_C/E_J and interpret your result. Compare with (b) and (c).

(2) Zusatzaufgabe: Shapiro steps

(10 Extra-Punkte)

Assume an ideal Josephson junction that is voltage-biased with

$$V = V_0 + V_1 \cos \omega_1 t .$$

- (a) Calculate the phase difference $\gamma(t)$ across the junction and write down the current $I = I_c \sin \gamma$.
- (b) Use the addition theorem and the Fourier expansions of $\sin(z\sin(\theta))$ and $\cos(z\sin(\theta))$ (look them up!) to express the current I as a trigonometric series.
- (c) Find the values of V_0 for which the current has a DC component.
- (d) Since the integration constant in $\gamma(t)$ is arbitrary, the DC current corresponding to one of the "Shapiro" values in (c) can take different values. Find the width of the corresponding current region. These plateaus are called "Shapiro steps".