Departement Physik, Universität Basel
 Prof. C. Bruder (Zimmer 4.2, Tel.: 20736 92, Christoph.Bruder@unibas.ch)
 Theory of Superconductivity, Frühjahrsemester 2023

Blatt 1

Abgabe: 2.3.23, 12:00H (Treppenhaus 4. Stock)

Tutor: Tobias Nadolny, Zi.: 4.48
(1) Meissner effect
(5 Punkte)
The current response of superconductors (at least close to the transition temperature) is described by the London equation,

$$
\mathbf{j}(\mathbf{r})=-\frac{1}{\mu_{0} \lambda^{2}} \mathbf{A}(\mathbf{r})
$$

where $\mathbf{A}(\mathbf{r})$ is the vector potential in the Coulomb gauge $(\boldsymbol{\nabla} \cdot \mathbf{A}=0)$ and λ is a material-specific length. (Further details are described in Tinkham, Sec. 1.2, but they are not relevant for solving the exercise).
Consider a superconducting semi-infinite space $(x>0)$ exposed to an external homogeneous magnetic field $\mathbf{B}_{0}=B_{0} \mathbf{e}_{z}$ in the z-direction. Calculate and plot the magnetic field and the current density in the superconductor.
(2) Toy model of Bogoliubov transformation

The effective Hamiltonian

$$
H=\epsilon_{a} a^{\dagger} a+\epsilon_{b} b^{\dagger} b-\Delta b a-\Delta^{*} a^{\dagger} b^{\dagger}
$$

contains fermions in two kinds of states a und b (i.e., $\left\{a, a^{\dagger}\right\}=1,\{a, b\}=0$ etc., here, $\{$,$\} is the anticommutator). We would like to diagonalize this Hamiltonian, i.e., express$ it in the form

$$
H=E_{\alpha} \alpha^{\dagger} \alpha+E_{\beta} \beta^{\dagger} \beta+E_{0}
$$

by introducing the so-called quasiparticle operators α, β through the following unitary transformation:

$$
a^{\dagger}=u \alpha^{\dagger}+v \beta, \quad b=-v^{*} \alpha^{\dagger}+u^{*} \beta .
$$

(u, v are complex numbers, α, β are fermionic operators!)
(a) Show that the coefficients have to fulfill $|u|^{2}+|v|^{2}=1$.
(b) Express H through α and β, and determine u and v such that H is diagonalized. Determine the energy spectrum of the new quasiparticles, that is, find the expressions for E_{α} and E_{β} for the special case $\epsilon_{a}=\epsilon_{b}=\epsilon$, and u, v, Δ are real.
(c) Discuss the meaning of E_{α}, E_{β}, and E_{0}.

(3) Landau diamagnetism

To appreciate why the Meissner effect is special we will calculate the orbital magnetic susceptibility of a spinless non-interacting electron gas (particle number N, volume V) at $T=0$. Assume that an external magnetic field $\mathbf{H}_{0}(\mathbf{r})$ is produced by a current density $\mathbf{j}_{0}(\mathbf{r})$. This field will induce a current density $\langle\mathbf{j}(\mathbf{r})\rangle=\left\langle\frac{e}{2} \sum_{i}\left[\mathbf{v}_{i} \delta\left(\mathbf{r}-\mathbf{r}_{i}\right)+\delta\left(\mathbf{r}-\mathbf{r}_{i}\right) \mathbf{v}_{i}\right]\right\rangle$ in the electron gas, and the resulting total field $\mu_{0} \mathbf{H}=\boldsymbol{\nabla} \times \mathbf{A}$ obeys the Maxwell equation $\boldsymbol{\nabla} \times \mathbf{H}=\left\langle\mathbf{j}_{0}+\mathbf{j}\right\rangle$, where $\langle\ldots\rangle$ is the ground-state expectation value and $\langle\mathbf{j}\rangle$ is connected to the magnetization via $\langle\mathbf{j}(\mathbf{r})\rangle=\boldsymbol{\nabla} \times \mathbf{M}(\mathbf{r})$.
(a) Show by a Fourier transform that the magnetic susceptibility χ defined by $\mathbf{M}(\mathbf{q})=\chi(\mathbf{q}) \mathbf{H}_{0}(\mathbf{q})$ can be written as

$$
\begin{equation*}
\chi(\mathbf{q})=\frac{\mu_{0}\langle\mathbf{n} \cdot \mathbf{j}(\mathbf{q})\rangle}{q^{2} A(\mathbf{q})-\mu_{0}\langle\mathbf{n} \cdot \mathbf{j}(\mathbf{q})\rangle}, \tag{1}
\end{equation*}
$$

where $\mathbf{n} \| \mathbf{A}$ is a unit vector. Here and in the following we will assume that χ is a scalar, i.e. $\mathbf{M} \| \mathbf{H}_{0}$, and that \mathbf{A} is given in the Coulomb gauge $\mathbf{q} \cdot \mathbf{A}(\mathbf{q})=0$.
(b) Show that $\langle\mathbf{j}(\mathbf{q})\rangle$ can be written as $\langle\mathbf{j}(\mathbf{q})\rangle=\frac{e}{m}\left\langle\mathbf{p}_{\mathbf{q}}\right\rangle-\frac{e^{2}}{m} \frac{N}{V} \mathbf{A}(\mathbf{q})$, where $\mathbf{p}_{\mathbf{q}}$ is the Fourier-transformed momentum density operator.
(c) To find $\chi(\mathbf{q})$ we will calculate $\langle\mathbf{j}(\mathbf{q})\rangle$ using first-order perturbation theory in \mathbf{A}. To first order in $\mathbf{A}, \mathcal{H}=\sum_{i} \frac{1}{2 m}\left[\mathbf{p}_{i}-e \mathbf{A}\left(\mathbf{r}_{i}\right)\right]^{2}$ can be written as $\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}$ where $\mathcal{H}_{1}=-\frac{e}{m} \sum_{\mathbf{k}} \mathbf{A}(\mathbf{k}) \cdot \mathbf{p}_{-\mathbf{k}}$. Consider \mathcal{H}_{1} as perturbation and use the first-order perturbed groundstate to express $\left\langle\mathbf{p}_{\mathbf{q}} \cdot \mathbf{n}\right\rangle$ as

$$
\begin{equation*}
\left\langle\mathbf{p}_{\mathbf{q}} \cdot \mathbf{n}\right\rangle=\frac{2 e}{m} \sum_{j \neq 0} \frac{\left.\left|\langle j| \mathbf{p}_{\mathbf{q}} \cdot \mathbf{n}\right| 0\right\rangle\left.\right|^{2}}{E_{j}-E_{0}} A(\mathbf{q}) . \tag{2}
\end{equation*}
$$

Here, $|j\rangle$ are the eigenstates of the unperturbed system. Use the second-quantized expression $\mathbf{p}_{\mathbf{q}} \cdot \mathbf{n}=\frac{1}{V} \sum_{\mathbf{k}} \hbar \mathbf{k} \cdot \mathbf{n} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}+\mathbf{q}}$ (or find another argument) to calculate the matrix elements and rewrite Eq. (2) as

$$
\left\langle\mathbf{p}_{\mathbf{q}} \cdot \mathbf{n}\right\rangle=\frac{2 e}{V} \sum_{\substack{|\mathbf{k}|<k_{F} \\|\mathbf{k}+\mathbf{q}|>k_{F}}} \frac{(\mathbf{k} \cdot \mathbf{n})^{2}}{\mathbf{k} \cdot \mathbf{q}+q^{2} / 2} A(\mathbf{q})=\frac{2 e}{V} \sum_{|\mathbf{k}|<k_{F}} \frac{(\mathbf{k} \cdot \mathbf{n})^{2}}{\mathbf{k} \cdot \mathbf{q}+q^{2} / 2} A(\mathbf{q}) .
$$

Plug this result into Eq. (1), convert the sum to an integral and calculate $\chi(q)$. Result:

$$
\chi(q)=\chi_{L} \frac{3}{8 \xi^{2}}\left[1+\xi^{2}-\frac{1}{2 \xi}\left(1-\xi^{2}\right)^{2} \ln \left|\frac{1+\xi}{1-\xi}\right|\right]
$$

where $\xi=\frac{q}{2 k_{F}}$ and

$$
\chi_{L}=-\mu_{0} \frac{e^{2}}{24 \pi^{2}} \frac{k_{F}}{m} \quad(\text { spinless case, i.e., degeneracy } 1) .
$$

(d) Plot $\chi(q)$ as a function of q. Express $\chi(0)$ "nicely" (hint: the Bohr radius a_{0} and the fine structure constant α are helpful) and estimate its value in a normal metal. Compare with the case of a superconductor, $\chi(0)=-1$, and show that this can be obtained from the normal-metal result by setting $\left\langle\mathbf{p}_{\mathbf{q}} \cdot \mathbf{n}\right\rangle=0$.

