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The purpose of problems 1 and 2 is to train the use of the formalism of second quantization.
The anticommutator/commutator relations for fermionic/bosonic operators read
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All others (like {cyr, ¢y }s [aks, al], -+ ) vanish.
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Position and momentum representation
For free electrons, the relation between position and momentum representation reads
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Write the Hamiltonian
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Tight-binding model in second quantization

A major part of solid-state physics deals with electrons in a periodic potential. As
a simplified model we consider fermionic particles moving on a cubic lattice (lattice
constant a). The kinetic energy is assumed to have tight-binding form
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here, > _, ;~ 1s the sum over all nearest neighbors (such that each bond appears only
once) and ) _ is the sum over the two spin directions.

(a) Determine the band structure e(k) for a d-dimensional cubic lattice (d = 1,2, 3).

(b) Draw the contours e(k) = const. in the (k,, k,)-plane for d = 2.

Hint: Diagonalize the Hamiltonian by a Fourier transform, ¢;, = \/LN > exp(ikr;)cke,
here, r; are the coordinates of the lattice sites; N is their total number.



