Departement Physik, Universität Basel

Prof. C. Bruder (Zimmer 4.2, Tel.: 20736 92, Christoph.Bruder@unibas.ch)

Theory of Superconductivity, Frühjahrsemester 2023

Blatt 0

The purpose of problems 1 and 2 is to train the use of the formalism of second quantization. The anticommutator/commutator relations for fermionic/bosonic operators read

	momentum representation	position representation
fermions	$\left\{c_{\mathbf{k}^{\prime} \sigma^{\prime}}, c_{\mathbf{k} \sigma}^{\dagger}\right\}=\delta_{\mathbf{k}^{\prime} \mathbf{k}} \delta_{\sigma^{\prime} \sigma}$	$\left\{\Psi_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right), \Psi_{\sigma}^{\dagger}(\mathbf{r})\right\}=\delta\left(\mathbf{r}^{\prime}-\mathbf{r}\right) \delta_{\sigma^{\prime} \sigma}$
bosons (spinless)	$\left[a_{\mathbf{k}^{\prime}}, a_{\mathbf{k}}^{\dagger}\right]=\delta_{\mathbf{k}^{\prime} \mathbf{k}}$	$\left[\Phi\left(\mathbf{r}^{\prime}\right), \Phi^{\dagger}(\mathbf{r})\right]=\delta\left(\mathbf{r}^{\prime}-\mathbf{r}\right)$

All others (like $\left\{c_{\mathbf{k}^{\prime} \sigma^{\prime}}, c_{\mathbf{k} \sigma}\right\},\left[a_{\mathbf{k}^{\prime}}^{\dagger}, a_{\mathbf{k}}^{\dagger}\right], \cdots$) vanish.

(1) Position and momentum representation

For free electrons, the relation between position and momentum representation reads

$$
\Psi_{\sigma}(\mathbf{r})=V^{-\frac{1}{2}} \sum_{\mathbf{k}} c_{\mathbf{k} \sigma} e^{i \mathbf{k r}} .
$$

Write the Hamiltonian

$$
H=\sum_{\sigma= \pm \frac{1}{2}} \int \mathrm{~d}^{3} r \Psi_{\sigma}^{\dagger}(\mathbf{r})\left[\frac{-\hbar^{2}}{2 m} \nabla^{2}+U(\mathbf{r})\right] \Psi_{\sigma}(\mathbf{r})
$$

in terms of the $c_{\mathbf{k} \sigma}, c_{\mathbf{k} \sigma}^{\dagger}$.

(2) Tight-binding model in second quantization

A major part of solid-state physics deals with electrons in a periodic potential. As a simplified model we consider fermionic particles moving on a cubic lattice (lattice constant a). The kinetic energy is assumed to have tight-binding form

$$
H=-t \sum_{<i, j>\sigma}\left[c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right],
$$

here, $\sum_{<i, j\rangle}$ is the sum over all nearest neighbors (such that each bond appears only once) and \sum_{σ} is the sum over the two spin directions.
(a) Determine the band structure $\epsilon(\mathbf{k})$ for a d-dimensional cubic lattice ($d=1,2,3$).
(b) Draw the contours $\epsilon(\mathbf{k})=$ const. in the $\left(k_{x}, k_{y}\right)$-plane for $d=2$.

Hint: Diagonalize the Hamiltonian by a Fourier transform, $c_{j \sigma}=\frac{1}{\sqrt{N}} \sum_{\mathbf{k}} \exp \left(i \mathbf{k r}_{j}\right) c_{\mathbf{k} \sigma}$, here, \mathbf{r}_{j} are the coordinates of the lattice sites; N is their total number.

